Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(6)2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37376583

RESUMO

African swine fever is a viral disease of swine caused by the African swine fever virus (ASFV). Currently, ASFV is spreading over the Eurasian continent and threatening global pig husbandry. One viral strategy to undermine an efficient host cell response is to establish a global shutoff of host protein synthesis. This shutoff has been observed in ASFV-infected cultured cells using two-dimensional electrophoresis combined with metabolic radioactive labeling. However, it remained unclear if this shutoff was selective for certain host proteins. Here, we characterized ASFV-induced shutoff in porcine macrophages by measurement of relative protein synthesis rates using a mass spectrometric approach based on stable isotope labeling with amino acids in cell culture (SILAC). The impact of ASFV infection on the synthesis of >2000 individual host proteins showed a high degree of variability, ranging from complete shutoff to a strong induction of proteins that are absent from naïve cells. GO-term enrichment analysis revealed that the most effective shutoff was observed for proteins related to RNA metabolism, while typical representatives of the innate immune system were strongly induced after infection. This experimental setup is suitable to quantify a virion-induced host shutoff (vhs) after infection with different viruses.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Aminoácidos/metabolismo , Marcação por Isótopo , Proteínas/metabolismo , Técnicas de Cultura de Células
2.
Annu Rev Virol ; 10(1): 305-323, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37040797

RESUMO

Nuclear egress of herpesvirus capsids across the intact nuclear envelope is an exceptional vesicle-mediated nucleocytoplasmic translocation resulting in the delivery of herpesvirus capsids into the cytosol. Budding of the (nucleo)capsid at and scission from the inner nuclear membrane (INM) is mediated by the viral nuclear egress complex (NEC) resulting in a transiently enveloped virus particle in the perinuclear space followed by fusion of the primary envelope with the outer nuclear membrane (ONM). The dimeric NEC oligomerizes into a honeycomb-shaped coat underlining the INM to induce membrane curvature and scission. Mutational analyses complemented structural data defining functionally important regions. Questions remain, including where and when the NEC is formed and how membrane curvature is mediated, vesicle formation is regulated, and directionality is secured. The composition of the primary enveloped virion and the machinery mediating fusion of the primary envelope with the ONM is still debated. While NEC-mediated budding apparently follows a highly conserved mechanism, species and/or cell type-specific differences complicate understanding of later steps.


Assuntos
Herpesviridae , Proteínas Virais , Proteínas Virais/genética , Proteínas Virais/química , Herpesviridae/genética , Membrana Nuclear , Proteínas do Capsídeo , Capsídeo , Núcleo Celular , Liberação de Vírus
3.
Viruses ; 16(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38257727

RESUMO

Herpesvirus entry requires the coordinated action of at least four viral glycoproteins. Virus-specific binding to a cellular receptor triggers a membrane fusion cascade involving the conserved gH/gL complex and gB. Although gB is the genuine herpesvirus fusogen, it requires gH/gL for fusion, but how activation occurs is still unclear. To study the underlying mechanism, we used a gL-deleted pseudorabies virus (PrV) mutant characterized by its limited capability to directly infect neighboring cells that was exploited for several independent serial passages in cell culture. Unlike previous revertants that acquired mutations in the gL-binding N-terminus of gH, we obtained a variant, PrV-ΔgLPassV99, that unexpectedly contained two amino acid substitutions in the gH transmembrane domain (TMD). One of these mutations, I662S, was sufficient to compensate for gL function in virus entry and in in vitro cell-cell fusion assays in presence of wild type gB, but barely for cell-to-cell spread. Additional expression of receptor-binding PrV gD, which is dispensable for cell-cell fusion mediated by native gB, gH and gL, resulted in hyperfusion in combination with gH V99. Overall, our results uncover a yet-underestimated role of the gH TMD in fusion regulation, further shedding light on the complexity of herpesvirus fusion involving all structural domains of the conserved entry glycoproteins.


Assuntos
Herpesvirus Suídeo 1 , Animais , Herpesvirus Suídeo 1/genética , Substituição de Aminoácidos , Técnicas de Cultura de Células , Glicoproteínas , Fusão de Membrana
4.
Nature ; 605(7908): 152-159, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35477759

RESUMO

Atherosclerotic plaques develop in the inner intimal layer of arteries and can cause heart attacks and strokes1. As plaques lack innervation, the effects of neuronal control on atherosclerosis remain unclear. However, the immune system responds to plaques by forming leukocyte infiltrates in the outer connective tissue coat of arteries (the adventitia)2-6. Here, because the peripheral nervous system uses the adventitia as its principal conduit to reach distant targets7-9, we postulated that the peripheral nervous system may directly interact with diseased arteries. Unexpectedly, widespread neuroimmune cardiovascular interfaces (NICIs) arose in mouse and human atherosclerosis-diseased adventitia segments showed expanded axon networks, including growth cones at axon endings near immune cells and media smooth muscle cells. Mouse NICIs established a structural artery-brain circuit (ABC): abdominal adventitia nociceptive afferents10-14 entered the central nervous system through spinal cord T6-T13 dorsal root ganglia and were traced to higher brain regions, including the parabrachial and central amygdala neurons; and sympathetic efferent neurons projected from medullary and hypothalamic neurons to the adventitia through spinal intermediolateral neurons and both coeliac and sympathetic chain ganglia. Moreover, ABC peripheral nervous system components were activated: splenic sympathetic and coeliac vagus nerve activities increased in parallel to disease progression, whereas coeliac ganglionectomy led to the disintegration of adventitial NICIs, reduced disease progression and enhanced plaque stability. Thus, the peripheral nervous system uses NICIs to assemble a structural ABC, and therapeutic intervention in the ABC attenuates atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Aterosclerose/prevenção & controle , Progressão da Doença , Gânglios Espinais , Gânglios Simpáticos , Camundongos , Neurônios/fisiologia , Placa Aterosclerótica/prevenção & controle
5.
Brain Pathol ; 32(3): e13031, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34709694

RESUMO

Herpes simplex encephalitis (HSE) is one of the most serious diseases of the nervous system in humans. However, its pathogenesis is still only poorly understood. Although several mouse models of predominantly herpes simplex virus 1 (HSV-1) infections mimic different crucial aspects of HSE, central questions remain unanswered. They comprise the specific temporofrontal tropism, viral spread within the central nervous system (CNS), as well as potential molecular and immunological barriers that drive virus into latency while only rarely resulting in severe HSE. We have recently proposed an alternative mouse model by using a pseudorabies virus (PrV) mutant that more faithfully represents the striking features of human HSE: temporofrontal meningoencephalitis with few severely, but generally only moderately to subclinically affected mice as well as characteristic behavioral abnormalities. Here, we characterized this animal model using 6- to 8-week-old female CD-1 mice in more detail. Long-term investigation over 6 months consistently revealed a biphasic course of infection accompanied by recurring clinical signs including behavioral alterations and mainly mild meningoencephalitis restricted to the temporal and frontal lobes. By histopathological and immunological analyses, we followed the kinetics and spatial distribution of inflammatory lesions as well as the underlying cytokine expression in the CNS over 21 days within the acute phase of infection. Affecting the temporal lobes, the inflammatory infiltrate was composed of lymphocytes and macrophages showing a predominantly lymphocytic shift 15 days after infection. A strong increase was observed in cytokines CXCL10, CCL2, CCL5, and CXCL1 recruiting inflammatory cells to the CNS. Unlike the majority of infected mice, strongly affected animals demonstrated extensive temporal lobe edema, which is typically present in severe human HSE cases. In summary, these results support the validity of our animal model for in-depth investigation of HSE pathogenesis.


Assuntos
Encefalite por Herpes Simples , Meningoencefalite , Animais , Sistema Nervoso Central/patologia , Citocinas , Modelos Animais de Doenças , Encefalite por Herpes Simples/diagnóstico , Encefalite por Herpes Simples/patologia , Feminino , Humanos , Camundongos , Neuropatologia
6.
PLoS Pathog ; 17(11): e1010117, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843605

RESUMO

Plasmacytoid dendritic cells (pDC) are important innate immune cells during the onset of viral infections as they are specialized in the production of massive amounts of antiviral type I interferon (IFN). Alphaherpesviruses such as herpes simplex virus (HSV) or pseudorabies virus (PRV) are double stranded DNA viruses and potent stimulators of pDC. Detailed information on how PRV activates porcine pDC is lacking. Using PRV and porcine primary pDC, we report here that PRV virions, so-called heavy (H-)particles, trigger IFNα production by pDC, whereas light (L-) particles that lack viral DNA and capsid do not. Activation of pDC requires endosomal acidification and, importantly, depends on the PRV gD envelope glycoprotein and O-glycosylations. Intriguingly, both for PRV and HSV-1, we found that L-particles suppress H-particle-mediated activation of pDC, a process which again depends on viral gD. This is the first report describing that gD plays a critical role in alphaherpesvirus-induced pDC activation and that L-particles directly interfere with alphaherpesvirus-induced IFNα production by pDC.


Assuntos
Células Dendríticas/imunologia , Herpes Simples/imunologia , Interferon Tipo I/metabolismo , Pseudorraiva/imunologia , Proteínas do Envelope Viral/metabolismo , Vírion/fisiologia , Animais , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Herpesvirus Suídeo 1/fisiologia , Masculino , Pseudorraiva/metabolismo , Pseudorraiva/virologia , Suínos , Testículo/imunologia , Testículo/metabolismo , Testículo/virologia , Proteínas do Envelope Viral/genética
7.
Viruses ; 13(8)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34452438

RESUMO

Herpesviruses are large DNA viruses, which encode up to 300 different proteins including enzymes enabling efficient replication. Nevertheless, they depend on a multitude of host cell proteins for successful propagation. To uncover cellular host factors important for replication of pseudorabies virus (PrV), an alphaherpesvirus of swine, we performed an unbiased genome-wide CRISPR/Cas9 forward screen. To this end, a porcine CRISPR-knockout sgRNA library (SsCRISPRko.v1) targeting 20,598 genes was generated and used to transduce porcine kidney cells. Cells were then infected with either wildtype PrV (PrV-Ka) or a PrV mutant (PrV-gD-Pass) lacking the receptor-binding protein gD, which regained infectivity after serial passaging in cell culture. While no cells survived infection with PrV-Ka, resistant cell colonies were observed after infection with PrV-gD-Pass. In these cells, sphingomyelin synthase 1 (SMS1) was identified as the top hit candidate. Infection efficiency was reduced by up to 90% for PrV-gD-Pass in rabbit RK13-sgms1KO cells compared to wildtype cells accompanied by lower viral progeny titers. Exogenous expression of SMS1 partly reverted the entry defect of PrV-gD-Pass. In contrast, infectivity of PrV-Ka was reduced by 50% on the knockout cells, which could not be restored by exogenous expression of SMS1. These data suggest that SMS1 plays a pivotal role for PrV infection, when the gD-mediated entry pathway is blocked.


Assuntos
Sistemas CRISPR-Cas/genética , Genoma Viral , Herpesvirus Suídeo 1/genética , Interações entre Hospedeiro e Microrganismos , Mutação , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Animais , Linhagem Celular , Edição de Genes , Rim/citologia , Rim/virologia , Suínos , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Replicação Viral
8.
Viruses ; 13(6)2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200728

RESUMO

The molecular mechanism affecting translocation of newly synthesized herpesvirus nucleocapsids from the nucleus into the cytoplasm is still not fully understood. The viral nuclear egress complex (NEC) mediates budding at and scission from the inner nuclear membrane, but the NEC is not sufficient for efficient fusion of the primary virion envelope with the outer nuclear membrane. Since no other viral protein was found to be essential for this process, it was suggested that a cellular machinery is recruited by viral proteins. However, knowledge on fusion mechanisms involving the nuclear membranes is rare. Recently, vesicle-associated membrane protein-associated protein B (VAPB) was shown to play a role in nuclear egress of herpes simplex virus 1 (HSV-1). To test this for the related alphaherpesvirus pseudorabies virus (PrV), we mutated genes encoding VAPB and VAPA by CRISPR/Cas9-based genome editing in our standard rabbit kidney cells (RK13), either individually or in combination. Single as well as double knockout cells were tested for virus propagation and for defects in nuclear egress. However, no deficiency in virus replication nor any effect on nuclear egress was obvious suggesting that VAPB and VAPA do not play a significant role in this process during PrV infection in RK13 cells.


Assuntos
Herpesvirus Suídeo 1/fisiologia , Interações Hospedeiro-Patógeno , Proteínas de Transporte Vesicular/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Núcleo Celular , Células Cultivadas , Imunofluorescência , Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Pseudorraiva/metabolismo , Pseudorraiva/virologia , Proteínas de Transporte Vesicular/genética , Vírion/ultraestrutura , Replicação Viral
9.
Pathogens ; 10(6)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201049

RESUMO

Suid alphaherpesvirus 1 (SuHV-1), better known as Pseudorabies virus (PrV), an alphaherpesvirus of swine, is the causative agent of Aujeszky's Disease [...].

10.
mBio ; 12(3)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947756

RESUMO

Herpesvirus entry and spread requires fusion of viral and host cell membranes, which is mediated by the conserved surface glycoprotein B (gB). Upon activation, gB undergoes a major conformational change and transits from a metastable prefusion to a stable postfusion conformation. Although gB is a structural homolog of low-pH-triggered class III fusogens, its fusion activity depends strictly on the presence of the conserved regulatory gH/gL complex and nonconserved receptor binding proteins, which ensure that fusion occurs at the right time and space. How gB maintains its prefusion conformation and how gB fusogenicity is controlled remain poorly understood. Here, we report the isolation and characterization of a naturally selected pseudorabies virus (PrV) gB able to mediate efficient gH/gL-independent virus-cell and cell-cell fusion. We found that the control exerted on gB by the accompanying viral proteins is mediated via its cytosolic domain (CTD). Whereas gB variants lacking the CTD are inactive, a single mutation of a conserved asparagine residue in an alpha-helical motif of the ectodomain recently shown to be at the core of the gB prefusion trimer compensated for CTD absence and uncoupled gB from regulatory viral proteins, resulting in a hyperfusion phenotype. This phenotype was transferred to gB homologs from different alphaherpesvirus genera. Overall, our data propose a model in which the central helix acts as a molecular switch for the gB pre-to-postfusion transition by conveying the structural status of the endo- to the ectodomain, thereby governing their cross talk for fusion activation, providing a new paradigm for herpesvirus fusion regulation.IMPORTANCE The class III fusion protein glycoprotein B (gB) drives membrane fusion during entry and spread of herpesviruses. To mediate fusion, gB requires activation by the conserved gH/gL complex by a poorly defined mechanism. A detailed molecular-level understanding of herpesvirus membrane fusion is of fundamental virological interest and has considerable potential for the development of new therapeutics blocking herpesvirus cell invasion and spread. Using in vitro evolution and targeted mutagenesis of three different animal alphaherpesviruses, we identified a single conserved amino acid in a regulatory helix in the center of the gB ectodomain that enables efficient gH/gL-independent entry and plays a crucial role in the pre-to-postfusion transition of gB. Our results propose that the central helix is a key regulatory element involved in the intrastructural signal transduction between the endo- and ectodomain for fusion activation. This study expands our understanding of herpesvirus membrane fusion and uncovers potential targets for therapeutic interventions.


Assuntos
Aminoácidos/genética , Evolução Molecular Direcionada , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Aminoácidos/química , Animais , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Modelos Moleculares , Mutação , Conformação Proteica , Células Vero , Proteínas do Envelope Viral/química
11.
Pathogens ; 10(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445487

RESUMO

Envelope glycoprotein (g)B is conserved throughout the Herpesviridae and mediates fusion of the viral envelope with cellular membranes for infectious entry and spread. Like all viral envelope fusion proteins, gB is modified by asparagine (N)-linked glycosylation. Glycans can contribute to protein function, intracellular transport, trafficking, structure and immune evasion. gB of the alphaherpesvirus pseudorabies virus (PrV) contains six consensus sites for N-linked glycosylation, but their functional relevance is unknown. Here, we investigated the occupancy and functional relevance of N-glycosylation sites in PrV gB. To this end, all predicted N-glycosylation sites were inactivated either singly or in combination by the introduction of conservative mutations (N➔Q). The resulting proteins were tested for expression, fusion activity in cell-cell fusion assays and complementation of a gB-deficient PrV mutant. Our results indicate that all six sites are indeed modified. However, while glycosylation at most sites was dispensable for gB expression and fusogenicity, inactivation of N154 and N700 affected gB processing by furin cleavage and surface localization. Although all single mutants were functional in cell-cell fusion and viral entry, simultaneous inactivation of all six N-glycosylation sites severely impaired fusion activity and viral entry, suggesting a critical role of N-glycans for maintaining gB structure and function.

12.
Artigo em Inglês | MEDLINE | ID: mdl-33495228

RESUMO

Herpesviruses are widespread and can cause serious illness. Many currently available antiviral drugs have limited effects, result in rapid development of resistance, and often exhibit dose-dependent toxicity. Especially for human cytomegalovirus (HCMV), new well-tolerated compounds with novel mechanisms of action are urgently needed. In this study, we characterized the antiviral activity of two new diazadispiroalkane derivatives, 11826091 and 11826236. These two small molecules exhibited strong activity against low-passage-number HCMV. Pretreatment of cell-free virus with these compounds greatly reduced infection. Time-of-addition assays where 11826091 or 11826236 was added to cells before infection, before and during infection, or during or after infection demonstrated an inhibitory effect on early steps of infection. Interestingly, 11826236 had an effect by addition to cells after infection. Results from entry assays showed the major effect to be on attachment. Only 11826236 had a minimal effect on penetration comparable to heparin. Further, no effect on virus infection was found for cell lines with a defect in heparan sulfate expression or lacking all surface glycosaminoglycans, indicating that these small molecules bind to heparan sulfate on the cell surface. To test this further, we extended our analyses to pseudorabies virus (PrV), a member of the Alphaherpesvirinae, which is known to use cell surface heparan sulfate for initial attachment via nonessential glycoprotein C (gC). While infection with PrV wild type was strongly impaired by 11826091 or 11826236, as with heparin, a mutant lacking gC was unaffected by either treatment, demonstrating that primary attachment to heparan sulfate via gC is targeted by these small molecules.


Assuntos
Herpesvirus Suídeo 1 , Internalização do Vírus , Alcanos , Animais , Antivirais , Glicosaminoglicanos , Heparina/farmacologia , Heparitina Sulfato , Humanos , Compostos de Espiro , Proteínas do Envelope Viral
13.
Virus Res ; 287: 198096, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32682818

RESUMO

During herpesvirus replication, newly synthesized nucleocapsids exit the nucleus by a vesicle-mediated transport, which requires the nuclear egress complex (NEC), composed of the conserved viral proteins designated as pUL31 and pUL34 in the alphaherpesviruses pseudorabies virus (PrV) and herpes simplex viruses. Oligomerization of the heterodimeric NEC at the inner nuclear membrane (INM) results in membrane bending and budding of virus particles into the perinuclear space. The INM-derived primary envelope then fuses with the outer nuclear membrane to release nucleocapsids into the cytoplasm. The two NEC components are necessary and sufficient for induction of vesicle budding and scission as shown after co-expression in eukaryotic cells or in synthetic membranes. However, where and when the NEC is formed, how membrane curvature is mediated and how it is regulated, remains unclear. While monospecific antisera raised against the different components of the PrV NEC aided in the characterization and intracellular localization of the individual proteins, no NEC specific tools have been described yet for any herpesvirus. To gain more insight into vesicle budding and scission, we aimed at generating NEC specific monoclonal antibodies (mAbs). To this end, mice were immunized with bacterially expressed soluble PrV NEC, which was previously used for structure determination. Besides pUL31- and pUL34-specific mAbs, we also identified mAbs, which reacted only in the presence of both proteins indicating specificity for the complex. Confocal microscopy with those NEC-specific mAbs revealed small puncta (approx. 0.064 µm2) along the nuclear rim in PrV wild type infected cells. In contrast, ca. 5-fold larger speckles (approx. 0.35 µm2) were detectable in cells infected with a PrV mutant lacking the viral protein kinase pUS3, which is known to accumulate primary enveloped virions in the PNS within large invaginations of the INM, or in cells co-expressing pUL31 and pUL34. Kinetic experiments showed that while the individual proteins were detectable already between 2-4 hours after infection, the NEC-specific mAbs produced significant staining only after 4-6 hours in accordance with timing of nuclear egress. Taken together, the data indicate that these mAbs specifically label the PrV NEC.


Assuntos
Anticorpos Monoclonais/imunologia , Herpesvirus Suídeo 1/imunologia , Membrana Nuclear/metabolismo , Proteínas Virais/imunologia , Liberação de Vírus/imunologia , Animais , Anticorpos Monoclonais/metabolismo , Linhagem Celular , Feminino , Herpesvirus Suídeo 1/genética , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Imunoeletrônica , Membrana Nuclear/imunologia , Nucleocapsídeo/metabolismo , Coelhos , Proteínas Virais/genética
14.
PLoS Pathog ; 16(3): e1008445, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32226043

RESUMO

Herpesviral encephalitis caused by Herpes Simplex Virus 1 (HSV-1) is one of the most devastating diseases in humans. Patients present with fever, mental status changes or seizures and when untreated, sequelae can be fatal. Herpes Simplex Encephalitis (HSE) is characterized by mainly unilateral necrotizing inflammation effacing the frontal and mesiotemporal lobes with rare involvement of the brainstem. HSV-1 is hypothesized to invade the CNS via the trigeminal or olfactory nerve, but viral tropism and the exact route of infection remain unclear. Several mouse models for HSE have been developed, but they mimic natural infection only inadequately. The porcine alphaherpesvirus Pseudorabies virus (PrV) is closely related to HSV-1 and Varicella Zoster Virus (VZV). While pigs can control productive infection, it is lethal in other susceptible animals associated with severe pruritus leading to automutilation. Here, we describe the first mutant PrV establishing productive infection in mice that the animals are able to control. After intranasal inoculation with a PrV mutant lacking tegument protein pUL21 and pUS3 kinase activity (PrV-ΔUL21/US3Δkin), nearly all mice survived despite extensive infection of the central nervous system. Neuroinvasion mainly occurred along the trigeminal pathway. Whereas trigeminal first and second order neurons and autonomic ganglia were positive early after intranasal infection, PrV-specific antigen was mainly detectable in the frontal, mesiotemporal and parietal lobes at later times, accompanied by a long lasting lymphohistiocytic meningoencephalitis. Despite this extensive infection, mice showed only mild to moderate clinical signs, developed alopecic skin lesions, or remained asymptomatic. Interestingly, most mice exhibited abnormalities in behavior and activity levels including slow movements, akinesia and stargazing. In summary, clinical signs, distribution of viral antigen and inflammatory pattern show striking analogies to human encephalitis caused by HSV-1 or VZV not observed in other animal models of disease.


Assuntos
Encefalite por Varicela Zoster , Gânglios Autônomos , Herpes Simples , Herpesvirus Humano 1 , Herpesvirus Suídeo 1 , Herpesvirus Humano 3 , Neurônios , Pseudorraiva , Animais , Modelos Animais de Doenças , Encefalite por Varicela Zoster/genética , Encefalite por Varicela Zoster/metabolismo , Feminino , Gânglios Autônomos/metabolismo , Gânglios Autônomos/patologia , Gânglios Autônomos/virologia , Herpes Simples/genética , Herpes Simples/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/metabolismo , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Neurônios/virologia , Pseudorraiva/genética , Pseudorraiva/metabolismo , Pseudorraiva/patologia , Suínos
15.
Cells ; 9(3)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192107

RESUMO

Newly assembled herpesvirus nucleocapsids traverse the intact nuclear envelope by a vesicle-mediated nucleo-cytoplasmic transport for final virion maturation in the cytoplasm. For this, they bud at the inner nuclear membrane resulting in primary enveloped particles in the perinuclear space (PNS) followed by fusion of the primary envelope with the outer nuclear membrane (ONM). While the conserved viral nuclear egress complex orchestrates the first steps, effectors of fusion of the primary virion envelope with the ONM are still mostly enigmatic but might include cellular proteins like SUN2 or ESCRT-III components. Here, we analyzed the influence of the only known AAA+ ATPases located in the endoplasmic reticulum and the PNS, the Torsins (Tor), on nuclear egress of the alphaherpesvirus pseudorabies virus. For this overexpression of wild type and mutant proteins as well as CRISPR/Cas9 genome editing was applied. Neither single overexpression nor gene knockout (KO) of TorA or TorB had a significant impact. However, TorA/B double KO cells showed decreased viral titers at early time points of infection and an accumulation of primary virions in the PNS pointing to a delay in capsid release during nuclear egress.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Núcleo Celular/virologia , Herpesvirus Suídeo 1/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citoplasma/virologia , Herpesvirus Suídeo 1/genética , Chaperonas Moleculares/metabolismo , Membrana Nuclear/metabolismo , Coelhos , Proteínas Virais/metabolismo , Liberação de Vírus/genética , Liberação de Vírus/fisiologia
16.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32051272

RESUMO

Herpesvirus nucleocapsids leave the nucleus by a vesicle-mediated translocation mediated by the viral nuclear egress complex (NEC). The NEC is composed of two conserved viral proteins, designated pUL34 and pUL31 in the alphaherpesvirus pseudorabies virus (PrV). It is required for efficient nuclear egress and is sufficient for vesicle formation and scission from the inner nuclear membrane (INM). Structure-based mutagenesis identified a lysine at position 242 (K242) in pUL31, located in the most membrane distal part of the NEC, to be crucial for efficient nucleocapsid incorporation into budding vesicles. Replacing the lysine by alanine (K242A) resulted in accumulations of empty vesicles in the perinuclear space, despite the presence of excess nucleocapsids in the nucleus. However, it remained unclear whether the defect in capsid incorporation was due to interference with a direct, electrostatic interaction between the capsid and the NEC or structural restrictions. To test this, we replaced K242 with several amino acids, thereby modifying the charge, size, and side chain orientation. In addition, virus recombinants expressing pUL31-K242A were passaged and screened for second-site mutations. Compensatory mutations at different locations in pUL31 or pUL34 were identified, pointing to an inherent flexibility of the NEC. In summary, our data suggest that the amino acid at position 242 does not directly interact with the nucleocapsid but that rearrangements in the NEC coat are required for efficient nucleocapsid envelopment at the INM.IMPORTANCE Herpesviruses encode an exceptional vesicle formation and scission machinery, which operates at the inner nuclear membrane, translocating the viral nucleocapsid from the nucleus into the perinuclear space. The conserved herpesviral nuclear egress complex (NEC) orchestrates this process. High-resolution imaging approaches as well as the recently solved crystal structures of the NEC provided deep insight into the molecular details of vesicle formation and scission. Nevertheless, the molecular mechanism of nucleocapsid incorporation remained unclear. In accordance with structure-based predictions, a basic amino acid could be pinpointed in the most membrane-distal domain of the NEC (pUL31-K242), indicating that capsid incorporation might depend on a direct electrostatic interaction. Our follow-up study, described here, however, shows that the positive charge is not relevant but that the overall structure matters.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Análise Mutacional de DNA/métodos , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/metabolismo , Mutação , Nucleocapsídeo/química , Nucleocapsídeo/metabolismo , Animais , Proteínas do Capsídeo , Linhagem Celular , Núcleo Celular/virologia , Chlorocebus aethiops , Seguimentos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Membrana Nuclear/metabolismo , Conformação Proteica , Células Vero , Proteínas Virais/química , Proteínas Virais/metabolismo , Vírion/metabolismo
17.
J Virol ; 94(7)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31941788

RESUMO

Protein kinases homologous to the US3 gene product (pUS3) of herpes simplex virus (HSV) are conserved throughout the alphaherpesviruses but are absent from betaherpesviruses and gammaherpesviruses. pUS3 homologs are multifunctional and are involved in many processes, including modification of the cytoskeleton, inhibition of apoptosis, and immune evasion. pUS3 also plays a role in efficient nuclear egress of alphaherpesvirus nucleocapsids. In the absence of pUS3, primary enveloped virions accumulate in the perinuclear space (PNS) in large invaginations of the inner nuclear membrane (INM), pointing to a modulatory function for pUS3 during deenvelopment. The HSV and pseudorabies virus (PrV) US3 genes are transcribed into two mRNAs encoding two pUS3 isoforms, which have different aminoterminal sequences and abundances. To test whether the two isoforms in PrV serve different functions, we constructed mutant viruses expressing exclusively either the larger minor or the smaller major isoform, a mutant virus with decreased expression of the smaller isoform, or a mutant with impaired kinase function. Respective virus mutants were investigated in several cell lines. Our results show that absence of the larger pUS3 isoform has no detectable effect on viral replication in cell culture, while full expression of the smaller isoform and intact kinase activity is required for efficient nuclear egress. Absence of pUS3 resulted in only minor titer reduction in most cell lines tested but disclosed a more severe defect in Madin-Darby bovine kidney cells. However, accumulations of primary virions in the PNS do not account for the observed titer reduction in PrV.IMPORTANCE A plethora of substrates and functions have been assigned to the alphaherpesviral pUS3 kinase, including a role in nuclear egress. In PrV, two different pUS3 isoforms are expressed, which differ in size, abundance, and intracellular localization. Their respective role in replication is unknown, however. Here, we show that efficient nuclear egress of PrV requires the smaller isoform and intact kinase activity, whereas absence of the larger isoform has no significant effect on viral replication. Thus, there is a clear distinction in function between the two US3 gene products of PrV.


Assuntos
Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Herpesvirus Suídeo 1/enzimologia , Proteínas Serina-Treonina Quinases/química , Proteínas Virais/química , Animais , Apoptose , Bovinos , Chlorocebus aethiops , Citoesqueleto/metabolismo , Genoma Viral , Herpesvirus Suídeo 1/fisiologia , Rim/citologia , Mutação , Membrana Nuclear/metabolismo , Fenótipo , Isoformas de Proteínas , Coelhos , Células Vero , Montagem de Vírus
18.
Adv Virus Res ; 104: 225-281, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31439150

RESUMO

Membrane fusion is a fundamental biological process that allows different cellular compartments delimited by a lipid membrane to release or exchange their respective contents. Similarly, enveloped viruses such as alphaherpesviruses exploit membrane fusion to enter and infect their host cells. For infectious entry the prototypic human Herpes simplex viruses 1 and 2 (HSV-1 and -2, collectively termed HSVs) and the porcine Pseudorabies virus (PrV) utilize four different essential envelope glycoproteins (g): the bona fide fusion protein gB and the regulatory heterodimeric gH/gL complex that constitute the "core fusion machinery" conserved in all members of the Herpesviridae; and the subfamily specific receptor binding protein gD. These four components mediate attachment and fusion of the virion envelope with the host cell plasma membrane through a tightly regulated sequential activation process. Although PrV and the HSVs are closely related and employ the same set of glycoproteins for entry, they show remarkable differences in the requirements for fusion. Whereas the HSVs strictly require all four components for membrane fusion, PrV can mediate cell-cell fusion without gD. Moreover, in contrast to the HSVs, PrV provides a unique opportunity for reversion analyses of gL-negative mutants by serial cell culture passaging, due to a limited cell-cell spread capacity of gL-negative PrV not observed in the HSVs. This allows a more direct analysis of the function of gH/gL during membrane fusion. Unraveling the molecular mechanism of herpesvirus fusion has been a goal of fundamental research for years, and yet important mechanistic details remain to be uncovered. Nevertheless, the elucidation of the crystal structures of all key players involved in PrV and HSV membrane fusion, coupled with a wealth of functional data, has shed some light on this complex puzzle. In this review, we summarize and discuss the contemporary knowledge on the molecular mechanism of entry and membrane fusion utilized by the alphaherpesvirus PrV, and highlight similarities but also remarkable differences in the requirements for fusion between PrV and the HSVs.


Assuntos
Herpesvirus Humano 1/fisiologia , Herpesvirus Suídeo 1/fisiologia , Herpesvirus Humano 2/fisiologia , Internalização do Vírus , Membrana Celular/metabolismo , Glicoproteínas/metabolismo , Proteínas do Envelope Viral/metabolismo , Ligação Viral
19.
J Virol ; 92(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29793954

RESUMO

Nuclear egress of herpesvirus capsids is mediated by the conserved nuclear egress complex (NEC), composed of the membrane-anchored pUL34 and its nucleoplasmic interaction partner, pUL31. The recently solved crystal structures of the NECs from different herpesviruses show a high structural similarity, with the pUL34 homologs building a platform recruiting pUL31 to the inner nuclear membrane. Both proteins possess a central globular fold, while the conserved N-terminal portion of pUL31 forms an extension reaching around the core of pUL34. However, the extreme N terminus of the pUL31 homologs, which is highly variable in length and amino acid composition, had to be removed for crystallization. Several pUL31 homologs contain a classical nuclear localization signal (NLS) within this part mediating efficient nuclear import. In addition, membrane-binding activity, blocking premature interaction with pUL34, nucleocapsid trafficking, and regulation of NEC assembly and disassembly via phosphorylation were assigned to the extreme pUL31 N terminus. To test the functional importance in the alphaherpesvirus pseudorabies virus (PrV) pUL31, N-terminal truncations and site-specific mutations were generated, and the resulting proteins were tested for intracellular localization, interaction with pUL34, and functional complementation of PrV-ΔUL31. Our data show that neither the bipartite NLS nor the predicted phosphorylation sites are essential for pUL31 function during nuclear egress. Moreover, nearly the complete variable N-terminal part was dispensable for function as long as a stretch of basic amino acids was retained. Phosphorylation of this domain controls efficient nucleocapsid release from the perinuclear space.IMPORTANCE Nuclear egress of herpesvirus capsids is a unique vesicle-mediated nucleocytoplasmic transport. Crystal structures of the heterodimeric NECs from different herpesviruses provided important details of this viral nuclear membrane deformation and scission machinery but excluded the highly variable N terminus of the pUL31 component. We present here a detailed mutagenesis study of this important portion of pUL31 and show that basic amino acid residues within this domain play an essential role for proper targeting, complex formation, and function during nuclear egress, while phosphorylation modulates efficient release from the perinuclear space. Thus, our data complement previous structure-function assignments of the nucleocapsid-interacting component of the NEC.


Assuntos
Herpesvirus Suídeo 1/química , Herpesvirus Suídeo 1/fisiologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Liberação de Vírus/fisiologia , Animais , Linhagem Celular , Cristalografia por Raios X , Humanos , Fosforilação , Domínios Proteicos , Proteínas Virais/genética
20.
J Virol ; 92(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29618646

RESUMO

Herpesvirus membrane fusion depends on the core fusion machinery, comprised of glycoproteins B (gB) and gH/gL. Although gB structurally resembles autonomous class III fusion proteins, it strictly depends on gH/gL to drive membrane fusion. Whether the gH/gL complex needs to be membrane anchored to fulfill its function and which role the gH cytoplasmic (CD) and transmembrane domains (TMD) play in fusion is unclear. While the gH CD and TMD play an important role during infection, soluble gH/gL of herpes simplex virus 1 (HSV-1) seems to be sufficient to mediate cell-cell fusion in transient assays, arguing against an essential contribution of the CD and TMD. To shed more light on this apparent discrepancy, we investigated the role of the CD and TMD of the related alphaherpesvirus pseudorabies virus (PrV) gH. For this purpose, we expressed C-terminally truncated and soluble gH and replaced the TMD with a glycosylphosphatidylinositol (gpi) anchor. We also generated chimeras containing the TMD and/or CD of PrV gD or HSV-1 gH. Proteins were characterized in cell-based fusion assays and during virus infection. Although truncation of the CD resulted in decreased membrane fusion activity, the mutant proteins still supported replication of gH-negative PrV, indicating that the PrV gH CD is dispensable for viral replication. In contrast, PrV gH lacking the TMD, membrane-anchored via a lipid linker, or comprising the PrV gD TMD were nonfunctional, highlighting the essential role of the gH TMD for function. Interestingly, despite low sequence identity, the HSV-1 gH TMD could substitute for the PrV gH TMD, pointing to functional conservation.IMPORTANCE Enveloped viruses depend on membrane fusion for virus entry. While this process can be mediated by only one or two proteins, herpesviruses depend on the concerted action of at least three different glycoproteins. Although gB has features of bona fide fusion proteins, it depends on gH and its complex partner, gL, for fusion. Whether gH/gL prevents premature fusion or actively triggers gB-mediated fusion is unclear, and there are contradictory results on whether gH/gL function requires stable membrane anchorage or whether the ectodomains alone are sufficient. Our results show that in pseudorabies virus gH, the transmembrane anchor plays an essential role for gB-mediated fusion while the cytoplasmic tail is not strictly required.


Assuntos
Herpesvirus Suídeo 1/metabolismo , Fusão de Membrana/fisiologia , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Domínios Proteicos/genética , Coelhos , Proteínas do Envelope Viral/genética , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...